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1. True or False.

(a) Let f(x) =

{
|x| if x 6= 0
1 if x = 0

∵ lim
n→∞
| 1
n
| = 0 6= 1

∴ lim
n→0

f(x) does not exist.

Solution: False

By definition of limit of function, we don’t need to consider the value of f
at 0

∀x which 0 < |x− 0| < ε, |f(x)| = |x| < ε

and therefore lim
n→0

f(x) = 0

(b) Let f be a uniformly continuous function

∀ε > 0, ∃δ > 0 such that ∀ x, y which |x− y| < δ, then |f(x)− f(y)| < ε

Pick any x′, y′ ∈ R, WLOG, assume x′ < y′

if |y′ − x′| = (n+ r)δ where r ∈ [0, 1)
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|f(x′)− f(y′)| = |f(x′)− f(x′ +
y′ − x′

n+ 1
) + f(x′ +

y′ − x′

n+ 1
)− f(y′)|

≤ |f(x′)− f(x′ +
y′ − x′

n+ 1
)|+ |f(x′ +

y′ − x′

n+ 1
)− f(y′)|

< ε+ |f(x′ +
y′ − x′

n+ 1
)− f(y′)|

= ε+ |f(x′ +
y′ − x′

n+ 1
)− f(x′ +

2(y′ − x′)
n+ 1

) + f(x′ +
2(y′ − x′)
n+ 1

)− f(y′)|

< 2ε+ |f(x′ +
2(y′ − x′)
n+ 1

)− f(y′)|
...

< (n+ 1)ε = (
(n+ 1)ε

(n+ r)δ
)((n+ r)δ) < (

2ε

δ
)((n+ r)δ)

≤ (
2ε

δ
)|y′ − x′|

∴ ∃ constant M such that ∀x′′ , y′′ ∈ R, |f(x′′)− f(y′′)| < M |x′′ − y′′|

Solution: False

There are trouble when |x′′ − y′′| < δ, ie, n = 0

The second last inequality is wrong.
This question show that uniformly continuity cannot give a bound on the ”
slope ”

counter example: f(x) =
√

(x) on [0,∞)

if M exists, WLOG, we can assume M > 1,

|f( 1
M2 )− f(0)| = 1

M
> M | 1

M2 − 0|

which lead to contradiction.

But f is uniformly continuous.

As f is continuous on [0, 1], therefore f is uniformly continuous on [0, 1]

∀ε > 0, ∃δ1 such that for all x, y ∈ [0, 1] where |x− y| < δ1,

we have |f(x)− f(y)| < ε/2
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on [0,∞), for all x, y ∈ [0,∞) where |x− y| < ε/2,

we have |f(x)− f(y)| = |
√
x−√y| = | x− y√

x+
√
y
| < |x− y| < ε/2

let δ = min{δ1, ε}

Pick any x′, y′ ∈ [0,∞) where |x′ − y′| < δ,

by above argument, if both x′, y′ ∈ [0, 1] or both x′, y′ ∈ [1,∞), we have
|f(x′)− f(y′)| < ε

WLOG, we can assume x′ < y′, if x′ ∈ [0, 1] and y′ ∈ [1,∞)

|f(x′)− f(y′)| = |f(x′)− f(1) + f(1)− f(y′)|
≤ |f(x′)− f(1)|+ |f(1)− f(y′)|
< ε/2 + ε/2 = ε

therefore f is uniformly continuous on [0,∞)

2. If f is a periodic continuous function ( ∃ constant T such that f(x) = f(T + x) ) ,
then f is uniformly continuous.

Solution:

As f is continuous on [0, T ], therefore f is uniformly continuous on [0, T ]

∀ε > 0, ∃δ such that for all x, y ∈ [0, T ] where |x− y| < δ,

we have |f(x)− f(y)| < ε/2

WLOG, assume δ < T

∀x′′, y′′ ∈ R such that |x′′ − y′′| < δ, there are only 2 cases

Case 1, there exists natural number n such that x′′, y′′ ∈ [nT, (n+ 1)T ]

x′′ − nT, y′′ − nT ∈ [0, T ]

|f(x′′)− f(y′′)| = |f(x′′ − nT )− f(y′′ − nT )| < ε/2
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Case 2, WLOG, we can assume x′′ < y′′. if there exists natural number n′ such
that x′′ ∈ [(n′ − 1)T, n′T ] and y′′ ∈ [n′T, (n′ + 1)T ]

|f(x′′)− f(y′′)| = |f(x′′)− f(n′T ) + f(n′T )− f(y′′)|
≤ |f(x′′)− f(n′T )|+ |f(n′T )− f(y′′)|
< ε/2 + ε/2 = ε

therefore f is uniformly continuous.

3. Let f(x) =

{
1
n

if x = m
n

where m, n are relatively prime
0 if x is irrational

Prove that f is continuous at 0.

Solution:

∀ε > 0, ∀x where |x− 0| < ε

case 1, if x is irrational or 0,

|f(x)− f(0)| = 0 < ε

case 2, if x = m
n

where m, n are relatively prime

|f(x)− f(0)| = | 1
n
| ≤ |m

n
| = |x− 0| < ε

therefore f is continuous at 0

4. Let {fk} be a sequence of function and f is a function, such that

∀x, lim
k→∞

fk(x) = f(x)

Moreover, ∀ε > 0, ∃δ, such that ∀k, if |x− y| < δ,

then |fk(x)− fk(y)| < ε

Prove that f is uniformly continuous.
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Solution:

the idea is that for fixed 2 point x and y, we can find large enough N , such that the
function value are near at x and y

∀ε > 0, ∃δ such that ∀k, if |x− y| < δ, then |fk(x)− fk(y)| < ε/3

now, x and y are fixed.

because lim
k→∞

fk(x) = f(x)

therefore ∃N1 such that ∀p ≥ N1, |fp(x)− f(x)| < ε/3

because lim
k→∞

fk(y) = f(y)

therefore ∃N2 such that ∀q ≥ N2, |fq(y)− f(y)| < ε/3

let N = max{N1, N2},

|f(x)− f(y)| = |f(x)− fN(x) + fN(x)− fN(y) + fN(y)− f(y)|
≤ |f(x)− fN(x)|+ |fN(x)− fN(y)|+ |fN(y)− f(y)|
< ε/3 + ε/3 + ε/3 = ε

therefore f is uniformly continuous


