THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics

MATH 2055 Tutorial 6 (Oct 28)

Ng Wing Kit

1. True or False.
(a) Let $f(x)= \begin{cases}|x| & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{cases}$
$\because \lim _{n \rightarrow \infty}\left|\frac{1}{n}\right|=0 \neq 1$
$\therefore \lim _{n \rightarrow 0} f(x)$ does not exist.

Solution: False
By definition of limit of function, we don't need to consider the value of f at 0
$\forall x$ which $0<|x-0|<\epsilon,|f(x)|=|x|<\epsilon$
and therefore $\lim _{n \rightarrow 0} f(x)=0$
(b) Let f be a uniformly continuous function
$\forall \epsilon>0, \exists \delta>0$ such that $\forall \mathrm{x}$, y which $|x-y|<\delta$, then $|f(x)-f(y)|<\epsilon$
Pick any $x^{\prime}, y^{\prime} \in \mathbb{R}$, WLOG, assume $x^{\prime}<y^{\prime}$
if $\left|y^{\prime}-x^{\prime}\right|=(n+r) \delta$ where $r \in[0,1)$

$$
\begin{aligned}
\left|f\left(x^{\prime}\right)-f\left(y^{\prime}\right)\right| & =\left|f\left(x^{\prime}\right)-f\left(x^{\prime}+\frac{y^{\prime}-x^{\prime}}{n+1}\right)+f\left(x^{\prime}+\frac{y^{\prime}-x^{\prime}}{n+1}\right)-f\left(y^{\prime}\right)\right| \\
& \leq\left|f\left(x^{\prime}\right)-f\left(x^{\prime}+\frac{y^{\prime}-x^{\prime}}{n+1}\right)\right|+\left|f\left(x^{\prime}+\frac{y^{\prime}-x^{\prime}}{n+1}\right)-f\left(y^{\prime}\right)\right| \\
& <\epsilon+\left|f\left(x^{\prime}+\frac{y^{\prime}-x^{\prime}}{n+1}\right)-f\left(y^{\prime}\right)\right| \\
& =\epsilon+\left|f\left(x^{\prime}+\frac{y^{\prime}-x^{\prime}}{n+1}\right)-f\left(x^{\prime}+\frac{2\left(y^{\prime}-x^{\prime}\right)}{n+1}\right)+f\left(x^{\prime}+\frac{2\left(y^{\prime}-x^{\prime}\right)}{n+1}\right)-f\left(y^{\prime}\right)\right| \\
& <2 \epsilon+\left|f\left(x^{\prime}+\frac{2\left(y^{\prime}-x^{\prime}\right)}{n+1}\right)-f\left(y^{\prime}\right)\right| \\
& \vdots \\
& <(n+1) \epsilon=\left(\frac{(n+1) \epsilon}{(n+r) \delta}\right)((n+r) \delta)<\left(\frac{2 \epsilon}{\delta}\right)((n+r) \delta) \\
& \leq\left(\frac{2 \epsilon}{\delta}\right)\left|y^{\prime}-x^{\prime}\right|
\end{aligned}
$$

$\therefore \exists$ constant M such that $\forall x^{\prime \prime}, y^{\prime \prime} \in \mathbb{R},\left|f\left(x^{\prime \prime}\right)-f\left(y^{\prime \prime}\right)\right|<M\left|x^{\prime \prime}-y^{\prime \prime}\right|$

Solution: False
There are trouble when $\left|x^{\prime \prime}-y^{\prime \prime}\right|<\delta$, ie, $n=0$
The second last inequality is wrong.
This question show that uniformly continuity cannot give a bound on the " slope "
counter example: $f(x)=\sqrt{(x)}$ on $[0, \infty)$
if M exists, WLOG, we can assume $M>1$,
$\left|f\left(\frac{1}{M^{2}}\right)-f(0)\right|=\frac{1}{M}>M\left|\frac{1}{M^{2}}-0\right|$
which lead to contradiction.

But f is uniformly continuous.
As f is continuous on $[0,1]$, therefore f is uniformly continuous on $[0,1]$
$\forall \epsilon>0, \exists \delta_{1}$ such that for all $x, y \in[0,1]$ where $|x-y|<\delta_{1}$,
we have $|f(x)-f(y)|<\epsilon / 2$
on $[0, \infty)$, for all $x, y \in[0, \infty)$ where $|x-y|<\epsilon / 2$,
we have $|f(x)-f(y)|=|\sqrt{x}-\sqrt{y}|=\left|\frac{x-y}{\sqrt{x}+\sqrt{y}}\right|<|x-y|<\epsilon / 2$
let $\delta=\min \left\{\delta_{1}, \epsilon\right\}$
Pick any $x^{\prime}, y^{\prime} \in[0, \infty)$ where $\left|x^{\prime}-y^{\prime}\right|<\delta$,
by above argument, if both $x^{\prime}, y^{\prime} \in[0,1]$ or both $x^{\prime}, y^{\prime} \in[1, \infty)$, we have $\left|f\left(x^{\prime}\right)-f\left(y^{\prime}\right)\right|<\epsilon$

WLOG, we can assume $x^{\prime}<y^{\prime}$, if $x^{\prime} \in[0,1]$ and $y^{\prime} \in[1, \infty)$

$$
\begin{aligned}
\left|f\left(x^{\prime}\right)-f\left(y^{\prime}\right)\right| & =\left|f\left(x^{\prime}\right)-f(1)+f(1)-f\left(y^{\prime}\right)\right| \\
& \leq\left|f\left(x^{\prime}\right)-f(1)\right|+\left|f(1)-f\left(y^{\prime}\right)\right| \\
& <\epsilon / 2+\epsilon / 2=\epsilon
\end{aligned}
$$

therefore f is uniformly continuous on $[0, \infty)$
2. If f is a periodic continuous function $(\exists$ constant T such that $f(x)=f(T+x))$, then f is uniformly continuous.

Solution:
As f is continuous on $[0, T]$, therefore f is uniformly continuous on $[0, T]$
$\forall \epsilon>0, \exists \delta$ such that for all $x, y \in[0, T]$ where $|x-y|<\delta$,
we have $|f(x)-f(y)|<\epsilon / 2$
WLOG, assume $\delta<T$
$\forall x^{\prime \prime}, y^{\prime \prime} \in \mathbb{R}$ such that $\left|x^{\prime \prime}-y^{\prime \prime}\right|<\delta$, there are only 2 cases
Case 1, there exists natural number n such that $x^{\prime \prime}, y^{\prime \prime} \in[n T,(n+1) T]$
$x^{\prime \prime}-n T, y^{\prime \prime}-n T \in[0, T]$
$\left|f\left(x^{\prime \prime}\right)-f\left(y^{\prime \prime}\right)\right|=\left|f\left(x^{\prime \prime}-n T\right)-f\left(y^{\prime \prime}-n T\right)\right|<\epsilon / 2$

Case 2, WLOG, we can assume $x^{\prime \prime}<y^{\prime \prime}$. if there exists natural number n^{\prime} such that $x^{\prime \prime} \in\left[\left(n^{\prime}-1\right) T, n^{\prime} T\right]$ and $y^{\prime \prime} \in\left[n^{\prime} T,\left(n^{\prime}+1\right) T\right]$

$$
\begin{aligned}
\left|f\left(x^{\prime \prime}\right)-f\left(y^{\prime \prime}\right)\right| & =\left|f\left(x^{\prime \prime}\right)-f\left(n^{\prime} T\right)+f\left(n^{\prime} T\right)-f\left(y^{\prime \prime}\right)\right| \\
& \leq\left|f\left(x^{\prime \prime}\right)-f\left(n^{\prime} T\right)\right|+\left|f\left(n^{\prime} T\right)-f\left(y^{\prime \prime}\right)\right| \\
& <\epsilon / 2+\epsilon / 2=\epsilon
\end{aligned}
$$

therefore f is uniformly continuous.
3. Let $f(x)= \begin{cases}\frac{1}{n} & \text { if } x=\frac{m}{n} \text { where } \mathrm{m}, \mathrm{n} \text { are relatively prime } \\ 0 & \text { if } \mathrm{x} \text { is irrational }\end{cases}$

Prove that f is continuous at 0 .

Solution:
$\forall \epsilon>0, \forall x$ where $|x-0|<\epsilon$
case 1 , if x is irrational or 0 ,
$|f(x)-f(0)|=0<\epsilon$
case 2 , if $x=\frac{m}{n}$ where m, n are relatively prime
$|f(x)-f(0)|=\left|\frac{1}{n}\right| \leq\left|\frac{m}{n}\right|=|x-0|<\epsilon$
therefore f is continuous at 0
4. Let $\left\{f_{k}\right\}$ be a sequence of function and f is a function, such that
$\forall x, \lim _{k \rightarrow \infty} f_{k}(x)=f(x)$
Moreover, $\forall \epsilon>0, \exists \delta$, such that $\forall k$, if $|x-y|<\delta$,
then $\left|f_{k}(x)-f_{k}(y)\right|<\epsilon$
Prove that f is uniformly continuous.

Solution:
the idea is that for fixed 2 point x and y , we can find large enough N , such that the function value are near at x and y
$\forall \epsilon>0, \exists \delta$ such that $\forall k$, if $|x-y|<\delta$, then $\left|f_{k}(x)-f_{k}(y)\right|<\epsilon / 3$
now, x and y are fixed.
because $\lim _{k \rightarrow \infty} f_{k}(x)=f(x)$
therefore $\exists N_{1}$ such that $\forall p \geq N_{1},\left|f_{p}(x)-f(x)\right|<\epsilon / 3$
because $\lim _{k \rightarrow \infty} f_{k}(y)=f(y)$
therefore $\exists N_{2}$ such that $\forall q \geq N_{2},\left|f_{q}(y)-f(y)\right|<\epsilon / 3$
let $N=\max \left\{N_{1}, N_{2}\right\}$,

$$
\begin{aligned}
|f(x)-f(y)| & =\left|f(x)-f_{N}(x)+f_{N}(x)-f_{N}(y)+f_{N}(y)-f(y)\right| \\
& \leq\left|f(x)-f_{N}(x)\right|+\left|f_{N}(x)-f_{N}(y)\right|+\left|f_{N}(y)-f(y)\right| \\
& <\epsilon / 3+\epsilon / 3+\epsilon / 3=\epsilon
\end{aligned}
$$

therefore f is uniformly continuous

